BUDDHA INSTITUTE OF TECHNOLOGY, GIDA, GORAKHPUR DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING CLASS TEST-1 (EVEN SEMESTER 2022-23)

April-2023

Course:B.Tech

Subject:Digital Communication
M.M.: 30

Semester: VI
SubjectCode: KEC-601
Roll No. \qquad

SECTION-A

1. Attempt all questions. Each questions carry equal marks.

Marks: 5*1=5

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Question	Level of Taxonomy	Course Outcom e
a.	In an experiment, three coins are tossed simultaneously. If the number of heads is the random variable, find the probability function for this random variable.	Understanding	(CO1)
b.	Explain the term random variable with the help of suitable example.	Understanding	(CO1)
c.	Determine the constant k such that the function $\mathrm{f}_{\mathrm{x}}(\mathrm{x})$ given by the expression $\begin{aligned} f_{x}(x) & =1 / k, \text { for } a \leq x<b \\ & =0, \text { elsewhere } \end{aligned}$ Is a probability density function. Also, find the cumulative distribution function of the random variable X satisfies the condition for $f_{x}(x)$ to be a probability density function.	Applying	(CO1)
d.	Prove that: (i) $\quad \mathrm{H}(\mathrm{X}, \mathrm{Y})=\mathrm{H}(\mathrm{X} / \mathrm{Y})+\mathrm{H}(\mathrm{Y})$ (ii) $\quad I(X: Y)=H(X)+H(Y)-H(X, Y)$	Understanding	(CO5)
e.	Discuss the term Information and Entropy.	Understanding	(CO5)

SECTION-B

2.Attempt all questions. Each questions carry equal marks.

Marks: 3*5=15

Q. No.	Question	Level of Taxonomy	Course Outcome
a.	A random variable X has the uniform distribution given by $F_{x}(x)=1 / 2 \pi$ for $0 \leq x \leq 2 \pi$ $=0$, otherwise Determine m_{x}, mean square, $\sigma_{x .}$ OR	Understanding	(CO1)
a.	A random process provides measurements x between the value 0 and 1 with a probability density function given as $f_{x}(x)=12 x^{3}-21 x^{2}+10 x$, for $0 \leq x \leq 1$ $=0$, otherwise	Understanding	(CO1)

	Determine the following: (i) $\quad \mathrm{P}[\mathrm{X} \leq 1 / 2]$ (ii) $\quad P[X>1 / 2]$		
b.	Identify the (i) Binary \& (ii) Ternary Huffman codes for the random variable X with probabilities $p=(1 / 21,2 / 21,3 / 21,4 / 21,5 / 21,6 / 21)$. Also calculate the average length in each case. OR	Applying	(CO5)
b.	Explain Huffman code with help of suitable example.	Applying	(CO5)
c.	Interpret the entropy of the source and sketch its variation for different values of α, if a discrete memory less source there are three symbols with probabilities $\mathrm{p} 1=\alpha$ and $\mathrm{p} 2=\mathrm{p} 3$.	Applying	(CO5)

SECTION-C

3.Attempt any all questions. Each questions carry equal marks.

Marks: 2*5=10

Q. No.	Question								Level of Taxonomy	Course Outco me
a.	Determine their proba Symbol Probabilities		$\begin{aligned} & \hline \text { man } \\ & \text { hd als } \\ & \hline S_{2} \\ & \hline \frac{1}{27} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { nary } \\ & \text { find } 6 \\ & \hline S_{3} \\ & \hline \frac{1}{3} \\ & \hline \end{aligned}$	de S_{4} $\frac{1}{9}$ R	$\begin{aligned} & \text { the } \\ & S_{5} \end{aligned}$	$\begin{aligned} & \hline \text { owin } \\ & \hline S_{6} \\ & \hline \frac{1}{27} \\ & \hline \end{aligned}$	message with	Applying	(CO5)
a.	A DMS X have five symbols $x 1, \times 2, x 3, x 4$ and $x 5$ with probabilities $P(x 1)=0.4, P(\times 2)=0.19, P(\times 3)=0.16, P(\times 4)=0.15$ and $P(x 5)=0.1$. Construct Shannon -Fanocode for x and calculate the efficiency of the code.								Applying	(CO5)
b.	Given a binary channel shown in the figure below (i) Identify the channel transition matrix. (ii) Identify $\mathrm{p}(\mathrm{y} 1)$ and $\mathrm{P}(\mathrm{y} 2)$, when $\mathrm{P}(\mathrm{x} 1)=\mathrm{P}(\mathrm{x} 2)=0.5$ (iii) Identify $\mathrm{H}(\mathrm{X}), \mathrm{H}(\mathrm{Y}), \mathrm{H}(\mathrm{X}, \mathrm{Y}), \mathrm{H}(\mathrm{X} / \mathrm{Y}), \mathrm{H}(\mathrm{Y} / \mathrm{X})$ and mutual information I(X:Y).								Applying	(CO5)

Note: Revised Bloom's Taxonomy Levels-
L1->Remembering, L2->Understanding, L3->Applying, L4->Analyzing, L5->Evaluating, L6-> Creating.

