

BUDDHA INSTITUTE OF TECHNOLOGY, GIDA, GORAKHPUR DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CLASS TEST-1 (EVEN SEMESTER 2022-23)

April-2023

Course:B.Tech			Semester: VI	
Subject:Digital Communication			SubjectCode:	KEC-601
M.M.: 30	Time:	2:00 hrs		Roll No

SECTION-A

1. Atte	empt all questions. Each questions carry equal marks.	Marks: 5*1=5		
Q. No.	Question	Level of Taxonomy	Course Outcom e	
a.	In an experiment, three coins are tossed simultaneously. If the number of heads is the random variable, find the probability function for this random variable.	Understanding	(CO1)	
b.	Explain the term random variable with the help of suitable example.	Understanding	(CO1)	
C.	Determine the constant k such that the function $f_x(x)$ given by the expression $f_x(x) = 1/k$, for $a \le x < b$ = 0, elsewhere Is a probability density function. Also, find the cumulative distribution function of the random variable X satisfies the condition for $f_x(x)$ to be a probability density function.	Applying	(CO1)	
d.	Prove that: (i) $H(X,Y) = H(X/Y)+H(Y)$ (ii) $I(X:Y) = H(X) + H(Y) - H(X,Y)$	Understanding	(CO5)	
e.	Discuss the term Information and Entropy.	Understanding	(CO5)	

SECTION-B

2.Attempt all questions. Each questions carry equal marks. Marks: 3*5=15

Q. No.	Question	Level of	Course
Q. NO.	Question	Taxonomy	Outcome
a.	A random variable X has the uniform distribution given by		
	$F_x(x) = 1/2\pi$ for $0 \le x \le 2\pi$	Understanding	(CO1)
	= 0 ,otherwise		
	Determine m_x , mean square, $\sigma_{x.}$		
	OR		
a.	A random process provides measurements x between the value 0 and 1 with a probability density function given as $f_X(x) = 12x^3-21x^2+10x$, for $0 \le x \le 1$ = 0 , otherwise	Understanding	(CO1)

	Determine the following: (i) P[X≤1/2] (ii) P[X>1/2]		
b.	Identify the (i) Binary & (ii) Ternary Huffman codes for the random variable X with probabilities p=(1/21, 2/21, 3/21, 4/21, 5/21, 6/21). Also calculate the average length in each case. OR	Applying	(CO5)
b.	Explain Huffman code with help of suitable example.	Applying	(CO5)
C.	Interpret the entropy of the source and sketch its variation for different values of α , if a discrete memory less source there are three symbols with probabilities p1= α and p2=p3.	Applying	(CO5)

SECTION-C

3.Atten	npt any all qu	estions	s. Each	questi	ons cai	ry equ	al mar	ks.	<u>.</u>	Marks:	2*5=10
Q. No.	Question Determine the Huffman binary code for the following message with their probabilities and also find efficiency.									Level of Taxonomy	Course Outco me
a.											
	Symbol S_1 S_2 S_3 S_4 S_5 S_6 S_7										
	Probabilities	$\frac{1}{3}$	$\frac{1}{27}$	$\frac{1}{3}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{27}$	$\frac{1}{27}$			
	OR								Applying	(CO5)	
a.	A DMS X have five symbols $x1,x2,x3,x4$ and $x5$ with probabilities $P(x1)= 0.4,P(x2)=0.19,P(x3)=0.16,P(x4)=0.15$ and $P(x5)=0.1.Construct$ Shannon –Fanocode for x and calculate the efficiency of the code.								Applying	(CO5)	
Ь.	Given a binary channel shown in the figure below $x_1 \xrightarrow{0.9} 0.2 y_1$ (i) Identify the channel transition matrix. (ii) Identify p(y1) and P(y2) ,when P(x1)=P(x2)=0.5 (iii) Identify H(X),H(Y),H(X,Y),H(X/Y),H(Y/X) and mutual information I(X:Y).							Applying	(CO5)		

Note: Revised Bloom's Taxonomy Levels-

L1->Remembering, L2->Understanding, L3->Applying, L4->Analyzing, L5->Evaluating, L6-> Creating.